MUDDY RIVERS — LACK OF TREES?

Muddy rivers are a problem for some, especially the direct users of river water, and a solution for land lacking in fertility. The ancient culture of Egypt and most Asian paddy rice systems were based on muddy rivers. Yet, to many observers ‘muddy rivers are a symptom of serious land degradation that needs to be resolved. Most problems with river flow and water are, in the public eye, linked to trees, or a lack of them. Forest conversion often leads to erosion and muddy rivers, but only because the resulting land use is too open. There are many ways to protect soils without forest — once the key processes involved are clarified. Research results from Indonesia help clarify the potential role of trees in the landscape, outside of forest.

Key Findings

1. Focus on the river to identify the source of muddy waters
 Much of the sediment in rivers derives from bank instability during peak flows, from landslides and from sediment in the river bed, rather than from current field-level erosion caused by deforestation.

2. Muddy rivers have multiple causes
 Increased sediment flux linked to agricultural use of landscapes can be due to footpaths, tracks and roads or to loss of riparian zone cover, rather than from current infield erosion.

3. Filter options
 The sediment load of a river is usually less than the current amount of erosion from the hillslopes, as indicated by sediment transfer ratios of less than 1.

4. Anchor & Bind
 Tree roots, depending on their distribution and strength, bind surface soil (reducing erosion) and anchor top soil to subsoil (reducing shallow landside risk). Landslide risk peaks a few years after tree removal, when tree roots have decayed.

Management Implications

1. Understand the actual causes of sediment flow before planning preventive and curative measures.
2. Don’t expect the ‘universal soil loss equation’ to predict actual soil loss or its main causes.
3. Strategic positioning of sediment filters on hill slopes can drastically reduce the transfer of sediment into streams.
4. Select and maintain a combination of perennials (trees, grasses) for anchor and bind effects on river banks and slopes.
Section 1. Is the main problem deforestation or a lack of trees in strategic positions?

Rapid deforestation and conversion to smallholder or plantation agriculture has exposed important watersheds across the humid tropics, while attempts to restore forest cover have had a low success rate, despite considerable public expenditure (1, 2). Most current public debate on the forest/non-forest dichotomy is framed within a forest/deforestation dichotomy. It is assumed that problems are due to deforestation, and reforestation will provide the answer. While the dichotomy can be valid in regions where land uses are dominated by segmentation (Figure 1 – right end of x-axis), it is not the case in much of the tropics where integrated land uses are more pronounced. Agroforestry mosaics and ‘trees outside forests’ (Figure 1 – left end of x-axis) in the tropics, are extensive and are rapidly expanding in area. Their functions in soil and water flows are the focus of current research (3, 4). Where actual watershed functions fall short of expectations, the first step should be reconcilation between different perceptions of reality: those held in the public domain, those embedded in local ecological knowledge, and those that are based on data and scientific analysis (5, 6). If one wants to understand the cause of ‘muddy rivers’, focusing on the paths of water flow and the river bed will provide direct evidence.

Over the past 5 years, ICRAR and partners have made a detailed analysis of the water and sediment flows in the Sumber Jaya region (Lampung, Indonesia), where the Way Besai flows through an area that lost most of its forest cover (60% in 1970, 12% in 2002) through conversion to coffee gardens and expansion of rice fields. The remaining forest is located on hill tops. The sediment load of the river is a concern of the local hydroelectric company. A Soil survey of area in the 1990s concluded that the land was suitable for coffee, but not for paddy rice, because the silt load of the river was not enough to bring fertility to rice fields. Times have changed and the water of the Way Besai now often resembles coffee-with-milk; most of the sediment that colours the water is assumed to originate in the coffee fields.

Section 2. Muddy rivers have multiple causes

The total sediment transport from an area is based on multiple sources and complex interactions. A sediment budget provides a check on whether or not inflows and filter effects have been accounted for. A challenge is that a large part of total sediment transport takes place during a few large storms — at times when measurement equipment is vulnerable.

In the Way Besai and its contributing streams, sediment concentration increases with flow rate until all available material has been washed out and the water becomes clear again. At 19 test sites along the Way Besai, large differences in sediment load were observed between the different streams (Figure 2 and 3). This variation was not obviously linked to differences in land cover or slope, in contrast to what the widely used Universal Soil Loss Equation suggests (which is in fact only quantifying surface erosion on hillslopes). The geological origin of the soils and the presence of internal sedimentation points in the various subcatchments explains much of the difference in sediment contribution. The availability of internal sedimentation areas or sinks upstream a test site ‘BS’ reduces sediment outflux out of 36% of the catchment.

The sediment load of the Way Besai is a concern for the local hydroelectric company.

Besai flows through an area that lost most of its forest cover (60% in 1970, 12% in 2002) through conversion to coffee gardens and expansion of rice fields. The remaining forest is located on hill tops. The sediment load of the river is a concern of the local hydroelectric company.

A Soil survey of area in the 1990s concluded that the land was suitable for coffee, but not for paddy rice, because the silt load of the river was not enough to bring fertility to rice fields. Times have changed and the water of the Way Besai now often resembles coffee-with-milk; most of the sediment that colours the water is assumed to originate in the coffee fields.
area (Figure 3;7). Only relatively little sediment from a subcatchment like the test site ‘WT’ — where thousands of people were evicted to restore watershed functions — is likely to reach the hydropower lake by small catchments, for example test sites ‘WR’, ‘WL’, and ‘WP’ that are characterized by both a high sediment yield (mainly because of landslides and river bank collapse) and low internal sedimentation areas, is an order of magnitude higher. Obviously the strategic positioning of trees is much more important, for example in the riparian areas of those ‘high risk’ subcatchments than at the border of a relatively slow flowing river (7).

By the 1990s both catchment-level and plot-level research was undertaken in the then Dutch Indies to identify major sources of sediment. Limited budgets and practical difficulties led to the abandonment of catchment research. In cases where surface erosion is not dominant, wrong diagnoses were the result.

Bank erosion and shallow landslides may account for 50% of the total sediment load, although there is considerable uncertainty to date in the way the volume of soil on the move is linked to above-average rainfall events.

Section 3. Filter options

The sediment load of a river is usually less than the current amount of erosion from the hillslopes because suspended soil particles in overland flow can be filtered and deposited along their pathway to the river. Sedimentation will occur in any zone that allows water to infiltrate (for example, due to worm activity or old tree root channels) or that traps soil particles among surface litter, grass or other contact cover. Filter effects can be stimulated by leaving spontaneous vegetation in place along contours, through a combination of soil cover and stimulation of macro-porosity formation — just as happens in a natural forest (Figure 4). The rate of litterfall, and thus the formation of surface filter zones, is lower in a coffee garden than in a natural forest, but the residence time of coffee litter on the surface is similar to that of forest. As a result, only young coffee gardens lack a protective filter effect (8).

Figure 3. Sketch of the major rivers in Sumatra and the locations where sediment loads were measured.

Figure 4. Summary of tree and forest effects of soil

- Tree canopy
- Unvegetated &
 unvegetated areas
- Horizontal
 roots
- Organic
 debris
- Filter effect protects the soil from washout, filters and conserves soil and water
- Deep roots 'anchor' the tree to the soil and reduce landslide risks

Figure 5. Summary of plot-level sediment concentration collected for the 12 locations indicated on the map in Sumatra.
Section 4: Anchor & bind — trees can increase soil stability

Trees contribute to the stability of soils, helping to decrease the risk of shallow landslides, erosion, and soil loss due to run-off during peak rainfall events. Landslide risk peaks a few years after tree removal, once roots have decayed (9). Simple observation techniques, exposing the proximal roots at the stembase can clarify the two key roles of tree roots (Figure 4). Horizontal roots bind soil and reduce erosion; Deep roots 'anchor' the tree to the subsoil and reduce the risk of shallow landslides. Some tree species and perennial grasses provide protection for topsoil, others anchor the upper layers to the lower ones. A combination of tree species and grasses will usually provide the best overall protection against shallow landslides. The rooting properties depend both on tree species and soil conditions, so local observations are needed to test literature results.

Future Implications

Current policies and watershed management tend to focus on maintaining or restoring forest cover in the upper catchments. Estimates of sediment loss tend to be based on the Universal Soil Loss Equation (USLE) applied to the agricultural fields. Research results such as those obtained in Sumber Jaya, with similar efforts in Northern Thailand, Vietnam and Western Kenya, point at a more diverse set of ‘causes’ and consequently a richer array of opportunities for intervention (10). A key aspect of this work is the need for participatory landscape appraisal: relatively simple observation techniques for muddy rivers can be calibrated to obtain reliable data, that can be used for negotiations between stakeholders. Avoiding the ‘knee-jerk’ reactions that relate all problems so lack of forest is the first step needed. Yet, lack of appropriate trees in strategic landscape positions is often part of the issue.

References

3. van Noordwijk M. Producing less and losing less? The effect of land use on climate change. Agriculture, Ecosystems and Environment 83:1-34.

http://www.worldagroforestry.org/WATER

Credit:

World Agroforestry Centre
accessed on 16th May 2014

Gebuert: Marin van Noordwijk
World Agroforestry Centre (ICRAF)
ICRAF Southeast Asia
9 Jalan Raja Daus, Suite 11G.20
90335 Jakarta, Indonesia
Tel: +62 21 551 3205
Fax: +62 21 551 3207
E-mail: info@icraf.org

World Agroforestry Centre
accessed on 16th May 2014

Credit:

Andrew Marwan van Noordwijk, Brian Knott and Samantha Burton
Design: Didi Kusuma
Printed: UNO Press