Determinants of Intensity of Adoption of Water Systems Innovations in Makanya Watershed, North-eastern, Tanzania

K. F. G. Masukia*, K. D Mutabazib, A. Z. Matteec, S. D. Tumbob, and F. B. Rwehumbizab.

a World Agroforestry Centre, African Highland Initiative, Box 26416 Kampala, Uganda
b Soil-Water Management Research Group, Sokoine University of Agriculture, P.O. Box 3003, Morogoro, Tanzania.
c Department of Agricultural Education and Extension, Sokoine University of Agriculture, P.O. Box 3008, Morogoro, Tanzania.

*Corresponding Author email: k.masuki@cgiar.org or kennymasuki@gmail.com

Abstract

Farmers in semi arid areas of north eastern Tanzania are faced with regular occurrences of intra-seasonal dry spells which adversely impact crop yields. The situation has fostered them to practice different types of innovations, including in-situ capture and management of rainwater, collection, concentration and/or diversion of runoff and collection and storage of run-off to mitigate the ever occurring intra-seasonal dry spells. The farmers in this area have been practicing these innovations for a number of years yet their adoption rate remains very low in smallholder farming environments. In some cases, while some farmers are practicing single innovation in their farm plots, others practice more innovations to intensify water and moisture conservation in their farm plots. Knowledge of the reasons for this difference is crucial for strategic planning of promotion of the innovations. This paper examines the main determinants of adoption of water system innovations with specific emphasis on the intensity of adoption using a cross-sectional sample of 234 farmers in the Makanya watershed. Censored Tobit model was used to estimate the coefficients of intensity of adoption of water system innovations. Intensity of adoption of water system innovation was found to be between 2 and 4. Most households (78.3\%) have at least 2 innovations per plot. The adoption intensity was found to be higher in the uplands whereby more than 56.7\% of farmers have 4 or more innovations in their farms as compared to 30.8\% in the lowlands and 41.7\% in the midlands. Group networking, years spent in formal education, age of respondent, location and agricultural information pathways were found to be major determinants of intensity of adoption at farm-level. Consideration of these factors in the scaling out of the water system innovations is predicted to improve their adoption and thus intensify management of water resources in the semi arid watersheds with similar settings like Makanya. Also the empirical knowledge on the determinants of adoption of water system innovations is critical for an effective promotion of best practices of water innovation systems at landscape level.

Key Words: adoption; intensity; innovations; smallholder; system; water

Introduction
Smallholder System Innovations and Dry Spell Mitigation

Smallholder water system innovations (WSIs) are dominated largely by rainwater harvesting which is usually employed as an umbrella term describing a range of methods of collecting water flows and conserving various forms of run-off water originating from ephemeral water flows during rainstorms for productive use (SIWI, 2001). The WSIs are none than conventional soil and water management innovations. They include all indigenous and novel technologies and methodologies for improved agricultural water management, for crop and livestock production. These innovations include water harvesting, drip irrigation, precision agriculture and conservation farming technologies aiming at improving water productivity while conserving resources (Rockstrom et al., 2004). They are mainly used to capture and store water and moisture to improve agricultural water productivity. Farmers in semi arid areas of north eastern Tanzania are faced with regular occurrences of intra-seasonal dry spells which adversely impact crop yields. These farmers practice different types of WSIs, including in-situ capture and management of rainwater, collection, concentration and/or diversion of run-off and collection and storage of run-off (Hatibu et al., 1999), as mitigative measures to reduce the ever occurring intra-seasonal dry spells. There is well documented evidence from around the world of successful innovative technologies and methodologies to improve agricultural productivity in smallholder rain fed farming systems (Rockstrom et al., 2004). One of the primary goals of watershed management should be to enable water resources to perform their many vital ecological functions and to benefit people who depend on them for the maintenance of their livelihoods. This includes inducing farmers to adopt innovative water management practices in their farming systems to harness rain and runoff water for mitigation of intra-seasonal dry spells. In developing countries community-based watershed management focuses on rainfall, not on 'managed' water. Here people depend on local water-harvesting and storage structures and, consequently, their understanding of ownership and rights over water relates more easily to rainfall than to diverted water (IWMI, 2002). Historically, communities in peninsular India and Sri Lanka have met this challenge by digging small local reservoirs, or tanks, to collect monsoonal water for use throughout the year. It has offered evidence that diverting rainwater to a large number of small water-harvesting structures in a catchment captures and stores more rainfall closer to communities than having a large reservoir downstream (IWMI, 2002). Downstream access to water as a result of increased water withdrawals upstream is an issue of concern, but it is assumed that there are overall gains and synergies to be made by maximizing the efficient use of rainwater at farm level (Rockstrom, 2001). Research on water harvesting systems in the arid Negev desert by collection of local run-off in many cascading small water harvesting storage systems was found to increase water use efficiency at the downstream end of a catchment (Evanari et al., 1971). Despite maximizing water use efficient at watershed level, water harvesting of surface runoff added as supplementary irrigation was reported to improved maize yields as a result of dry spell mitigation (Barron and Okwach, 2005); and through adaptive adoption, smallholder water system innovations provide large opportunities for improved rural livelihoods (Rockstrom et al., 2004).
Adoption of smallholder water system innovations

As African agriculture remains largely rain fed and as water scarcity issues are receiving much more prominence, more work on technology development and adoption studies in this area is anticipated (Place et al., 2002). Extensive research indicates that integrated soil and water management and technological innovations in water management can contribute to significant upgrading of rain fed agriculture which is the dominant livelihood base in large parts of Sub Saharan Africa (SSA) (Rockstrom and Falkenmark, 2000; Hatibu et al., 1999; Agarwal and Narain, 1997). The RWH system innovations in the semi-arid areas of East Africa constitute about 30% of all farmers’ innovations while water management innovations more broadly comprised half of the total (Critchley, 1999). A wider range of WSIs already exist and are being used successfully by farmers in the Makanya watershed (Masuki et al., 2004). But, despite many promising technologies, some farmers often fail to adopt them (Knox and Meinzen-Dick, 1999). This paper aims to address the reasons for that.

Intensity of adoption of technology

Intensity of adoption refers to the number of technologies practiced by the same farmer. The intensity of adoption of different technologies is measured by a variable that represents the breadth of technology use within a particular stage of production. Saha et al. (1994) recognized that producers’ adoption intensity is conditional on their knowledge of the new technology and on their decision to adopt. They found that larger and more educated operators are likely to adopt more intensively. Abadi Ghadim (2000) conducted a study that comes close to implementing and estimating a complete set of risk impacts related to adoption. Results showed that some determinants of the decision to adopt the innovation are different from those that determine the decision regarding the intensity of adoption. This paper investigates the main determinants of adoption of water system innovation with focus on intensity of adoption using a cross-section of farmers in Makanya watershed.

Methodology

Description of Research Sites

Data were collected from an extensive watershed with varying biophysical, socio-economic and farming conditions. The Makanya watershed is located in Same District within the Pangani River basin hydrological system south of Mount Kilimanjaro. The study covered five villages located in the up-, mid- and down- stream of a single watershed extending from the Pare Mountains (composing the globally famous Eastern Arc Mountains) to the Pangani River. Villages in the upland include Chome and Vudee, those in the midland are Bangalala and Mwembe, and in the lowland is Makanya. Same district is located between latitudes 4° 8’ and 4° 25’ south, and longitudes 37° 45’ and 37° 54’ East (Figure 1). It lies along the Nairobi – Dar-es-Salaam highway. The watershed course opens in the lowland about 140 km from Moshi town. The watershed lies at an elevation between 600 m and 2500 m above mean sea level in the lowland and upland respectively.
The rainfall pattern is bimodal, with mean annual total of 400 – 600 mm in the lowland to midland and around 800-1200mm in the upland. This rainfall pattern distinguishes the watershed into semi-arid mid- to lowland and sub-humid upland drylands. The short rains start in November and extend to January. The long rains start in March and extend to May and are more reliable. Evaporation varies between 3.0 - 5.4 mm d\(^{-1}\) with an annual long-term average of 1,575 mm y\(^{-1}\). Virtually, the study area has erratic rainfall regime particularly in terms of distribution and, high probabilities of the occurrences of both seasonal droughts and intra-seasonal dry-spells. This situation negatively affects the performance of agriculture, which is the mainstay of people's livelihoods. However, farmers are not passive victims of such climate variability as they have developed water systems innovations (WSIs) that have enabled them to survive in the area.
Methodological Approach

Design of the study

It is important to note that, the study was framed on a perspective different from conventional household studies. The study made use of both participatory approaches and structured interviews to collect the information required to address the hypotheses. Participatory approaches included discussions with village leaders, key informants and focused group discussions in each of the study villages. In order to collect quantitative community related information, structured household interviews with a mixture of closed and open-ended questions were used. Information collected through participatory approaches is very useful to enrich the understanding and interpretation of the results obtained through structured household interviews. The questionnaire survey involved interviewing random samples of households proportionally selected from each village of the study watershed as shown in Table 1.

Table 1: Structure of the sample for different villages in the watershed

<table>
<thead>
<tr>
<th>Landscape (Villages)</th>
<th>position</th>
<th>Number of household selected and position of respondent</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Household head</td>
<td>Spouse</td>
</tr>
<tr>
<td>Lowlands (Makanya)</td>
<td></td>
<td>29</td>
<td>11</td>
</tr>
<tr>
<td>Midlands (Mwembe and Bangalala)</td>
<td></td>
<td>58</td>
<td>37</td>
</tr>
<tr>
<td>Uplands (Vudee and Chome)</td>
<td></td>
<td>69</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>156</td>
<td>71</td>
</tr>
</tbody>
</table>

The central aspect of the study is the intensity of adoption of WSIs which is among the 'household' variables. This condition shaped the whole study particularly in the design of research instruments and analytical approaches.

Data Analysis

The Tobit regression model was used to analyze and estimate the determinants of intensity of adoption of water system innovations at farm level. In a standard regression model, the dependent variable is generally assumed to take on any value within the set of real numbers and the probability of any particular value is zero. In the dichotomous Probit model, the dependent variable assumes only two values, i.e. 0 and 1, each of which is assigned a probability mass. Intensity of adoption of WSIs does not have a specific measurement but occurs in a measurement that exceeds some threshold and since it not easy to know by how much its distribution is censored. Given the censored nature of distribution in the intensity of adoption of WSIs an appropriate approach for modeling censored dependent variables using maximum Likelihood Estimation (MLE) procedure is Tobit model (Aldrich and Nelson, 1984). Tobin (1958) proposed a limited dependent variable model, later called the Tobit model by Goldberger (1964) to handle dependent variables which are combinations of these two cases, specifically mass...
points at the low end called the limit value and continuous values above the limit. The advantage of Tobit Model over dichotomous choice models such Logit and Probit is that it permits determination of not only the probability of adoption but also the intensity of adoption once the adoption decision has been made. Thus Tobit model allows simultaneous identification of factors that affect adoption and intensity of adoption of innovation. The approach has been intensively used in adoption and impact studies (Adesina and Baidu-Fouson, 1995; Sanginga et al., 1999). The limit of the variable can be due to truncation or censoring of observations in the data set. Truncation occurs when the sample data are drawn from a subset of a larger population under consideration. Censoring, on the other hand, is essentially a defect in the sample data brought about by some random mechanism, i.e. Y assumes a value Y* if it falls within some specified range, otherwise Y is equal to a limit value often set to zero. This implies that outside the specified range, the true values of Y* become masked and are all transformed to a single value which is the limit. As a result, the dependent variable contains zero values for a significant fraction of the observations. To analyze these kinds of problems, the model is specified as follows:

\[
Y_{it} = \beta X_{it} + \mu_{it}
\]

\[
Y_{it} = 0 \quad \text{if} \quad \beta X_{it} + \mu_{it} \leq 0
\]

\[
Y_{it} = \beta X_{it} + \mu_{it} \quad \text{if} \quad \beta X_{it} + \mu_{it} > 0
\]

Where \(Y_{it} \) = Dependent variable (is the number of WSIs implemented in a plot at a particular time)

\(X_{it} \) = a set if independent variables representing key attributes of farm-level socio-economic characteristics

\(\mu_{it} \) = residual effect

\(\beta \) and \(\sigma^2 \) = estimated maximum likelihood analysis

Tobit model parameters do not directly correspond to changes in the dependent variable brought about by changes in independent variables. To obtain the correct regression effects for observations above the limit, the \(\beta \) coefficients must be adjacent as follows:

\[
\frac{\partial E (y_{it})}{\partial X_{it}} = \phi \left(\frac{y_{it}}{\sigma} \right) \beta_i
\]

The independent variables included in the Tobit model are described in Table 2. The independent variables have varying effects on intensity of adoption of technologies. It was hypothesized that these independent variables have influence on the intensity of adoption. From the adoption Meta theory (Rogers, 2003), some factors are said to affect adoption positively or negatively. For instance, membership in farmer association, network with neighbours and friends and interaction with professionals may affect adoption positively. Farmers were asked on their involvement in any community/farmer group; what was their perceived level of trust among group members; how many sources information on the WSIs they implement in their farms; their interaction within the group and/or other farmers within the community; their interaction with other people who normally visit the villages (like students and their supervisors from abroad and other visitors who came to see the implementation of water system innovations in the area).
Table 2: Description of independent variable included in regression model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable description</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUPNET</td>
<td>Group networking</td>
<td>Yes=1; No=3; Don’t know=3</td>
</tr>
<tr>
<td>SEXHH</td>
<td>Sex (dummy)</td>
<td>Male=1; female = 2</td>
</tr>
<tr>
<td>FORMAEDU</td>
<td>Year of formal education</td>
<td>Years</td>
</tr>
<tr>
<td>AGEHH</td>
<td>Age of head of household</td>
<td>Years</td>
</tr>
<tr>
<td>DIFPPINT</td>
<td>Interaction with people of different background</td>
<td>Very low=1; low=2; average=3; high=4; very high=5</td>
</tr>
<tr>
<td>SAMPPINT</td>
<td>Interaction with people of the same background</td>
<td>Very low=1; low=2; average=3; high=4; very high=5</td>
</tr>
<tr>
<td>LOCATION</td>
<td>Location (dummy)</td>
<td>Uplands=1; Midlands=2; Lowlands=3</td>
</tr>
<tr>
<td>SOCTRUST</td>
<td>Perception of social trust</td>
<td>Very low=1; low=2; average=3; high=4; very high=5</td>
</tr>
<tr>
<td>COLLEACT</td>
<td>Frequency of attending collective action</td>
<td>Number of meetings attended</td>
</tr>
<tr>
<td>AGRINFO</td>
<td>Agricultural information pathway</td>
<td>Number of information sources</td>
</tr>
<tr>
<td>ATTNDMET</td>
<td>Percent of institutions called meetings attended</td>
<td>Percentage</td>
</tr>
</tbody>
</table>

Results and Discussion

Intensity of adoption of water system innovation

Table 3 shows the intensity of adoption of WSIs. The intensity varies with the toposquence across the Makanya watershed. Generally, most households (78.3%) have adopted at least 2 innovations per plot. The adoption intensity was found to be higher in the uplands whereby more than 56.7% of farmers have 4 or more innovations in their farms as compared to 30.8% in the lowlands and 41.7% in the Midlands. Most farmers in the lowlands practice run-off diversion due to the rainfall shortage in the lowlands farmers depend much on spate irrigation whose water is diverted from ephemeral streams which run from the uplands during heavy storms. Therefore this innovation goes together with diversion canals, borders basin (sunken beds) and large planting pits that hold water around the plant. Some other innovations to compliment this include use of farm yard manure, deep tillage, mulching and cover crops. This innovation also goes together with charco-dams for storing the diverted water and it is only common in the lowlands. This is due to the fact that much as the lowlands is highly constrained in terms of water and moisture compared to the midlands and uplands attributed to the biophysical nature of the landscape which is almost flat and receives very little rainfall, thus, this area has less opportunities for WSIs as compared to uplands and midlands. Therefore most farmers in the lowlands implement fewer innovations in the same farm plot (mainly diversion, conveyance and storage type) but strategic to coping with drought shock that normally strikes the area before the crops reach maturity.
During key informants and focus group discussions the farmers explained that the main reason for intensifying their WSIs adoption lies behind tapping every opportunity to curb the little water they receive in their areas. On the other hand they also link a number of reasons to having various innovations in the same plot such as controlling soil erosion for the farms which are on slopes (mostly in the midlands and uplands) and improving soil fertility.

Table 3: Intensity of adoption of WSIs in the Makanya watershed (%)

<table>
<thead>
<tr>
<th>Landscape position</th>
<th>Number of WSIs adopted per plot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 2</td>
</tr>
<tr>
<td>Lowlands (Makanya)</td>
<td>18.3</td>
</tr>
<tr>
<td>Midlands (Mwembe and Bangalala)</td>
<td>35.0</td>
</tr>
<tr>
<td>Uplands (Vudee and Chome)</td>
<td>11.7</td>
</tr>
<tr>
<td>Total</td>
<td>21.7</td>
</tr>
</tbody>
</table>

Determinants of intensity of adoption

Table 4 shows the results of maximum likelihood estimations of the intensity of adoption. Results of Tobit run shows that seven out of eleven estimated coefficients of intensity of adoption of WSIs exhibited positive sign and four were significant at 1%. The coefficients of group networking (GROUPNET), number of years spent in formal education (FORMAEDU), age of head of household (AGEHH) and pathways of agricultural information (AGRINFO) are positively and highly significant (P ≤ 0.01) to the intensity of adoption of water system innovations.

Table 4: Maximum likelihood estimations of intensity of adoption

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable description</th>
<th>Coefficient</th>
<th>Std error</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUPNET</td>
<td>Group networking</td>
<td>0.32039***</td>
<td>0.0899</td>
</tr>
<tr>
<td>SEXHH</td>
<td>Sex (dummy)</td>
<td>-0.05441</td>
<td>0.1775</td>
</tr>
<tr>
<td>FORMAEDU</td>
<td>Year of formal education</td>
<td>0.07901***</td>
<td>0.0257</td>
</tr>
<tr>
<td>AGEHH</td>
<td>Age of head of household</td>
<td>0.01579***</td>
<td>0.0037</td>
</tr>
<tr>
<td>DIFPPINT</td>
<td>Interaction with people of different background</td>
<td>-0.00004</td>
<td>0.0009</td>
</tr>
<tr>
<td>SAMPPINT</td>
<td>Interaction with people of the same background</td>
<td>-0.00065</td>
<td>0.0011</td>
</tr>
<tr>
<td>LOCATION</td>
<td>Location (dummy)</td>
<td>0.25310</td>
<td>0.1857</td>
</tr>
<tr>
<td>SOCTRUST</td>
<td>Perception of social trust</td>
<td>0.00045</td>
<td>0.0008</td>
</tr>
<tr>
<td>COLLEACT</td>
<td>Frequency of attending collective action</td>
<td>-0.00111</td>
<td>0.0026</td>
</tr>
<tr>
<td>AGRINFO</td>
<td>Agricultural information pathway</td>
<td>0.21925***</td>
<td>0.0678</td>
</tr>
<tr>
<td>ATTNDMOMET</td>
<td>Percent of institutions called meetings attended</td>
<td>0.00014</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

* Significant at 10%; ** significant at 5%; *** significant at 1%
Group networking is a form of social capital that involves interaction and interconnectedness in a society. It intensifies social participation such as membership in local organizations and has a positive relationship with the use of conservation practices. Abd-Ella et al. (1981) and Korsching et al. (1981) also experienced similar findings.

Number of years spent in formal education is one of important determinants of intensity of adoption of WSIs. Education catalyses the process of information flow and leads the farmer to as wide as possible, the different pathways of getting information about a technology. The more information pathways the farmer has, the more the farmer intensifies adoption of WSIs. Indeed, studies of innovation adoption and diffusion have long recognized information as a key variable, and its availability is typically found to correlate with adoption (de Harrera and Sain, 1999). Information becomes especially important as the degree of complexity of the conservation technology increases (Nowak, 1987). Agbamu (1995) indicated that contact alone will not promote adoption if information dissemination is ineffective, inaccurate or inappropriate. Information sources that positively influence the adoption of technologies can include: other farmers; media; meetings and extension officers. Studies have not always shown that the ease of obtaining information correlates with adoption. Saha et al. (1994) stressed the fundamental role played by the quality of information on the decision to adopt or not and on the intensity of adoption of a new technology in a context where adoption is divisible and significant risks are present. Ersado (2001) reported adoption of more technologies - intensity of adoption - increases as household head education level increases.

Our findings show that age correlated well with intensity of adoption of WSIs. This implies that as the farmer gets older he/she tends to intensify adoption of innovation in his/her farm. We simply attribute this to experience of the farmer in farming activities which other studies have found to be important in adoption of technology.

Conclusions

This study has highlighted that group networking, number of years spent in formal education, age of head of household and pathways of agricultural information all affect the intensity of adoption positively and significantly. This suggests that agricultural water management strategies in semi arid areas should consider strengthening collective action where people create interconnectedness among themselves, putting in mind their education level and age. Also, the pathways for agricultural information should be multiple and variable to be able to reach a cross-section of important actors in the watershed. As several other studies have indicated that the rate of adoption of WSIs is still low, consideration of these factors in the scaling out of the WSIs is predicted to improve their adoption and thus intensify management of water resources in the semi arid watersheds with similar settings like Makanya.

Furthermore, smallholder farmers such as those in Makanya watershed who have developed their own water system innovations over years, now view group networking and information pathways as important determinants in the adoption of WSIs. Development agencies involved in promoting water management innovations thus need
to emphasize on community based organizations, collective action and multiple pathways for dissemination of proven natural resources management innovations in order to achieve higher rate of adoption of water system innovation at landscape level. Empirical knowledge on the determinants of adoption of water system innovations is critical for an effective promotion of best practices of water innovation systems at landscape level.

Acknowledgements

This study was conducted as part of the Smallholder Systems Innovation in Integrated Water Management (SSI) Program. We wish to express our thanks to WOTRO, DGIS and SIDA for funding this work through SSI programme, and Soil-Water Management Research Group (SWMRG) for facilitating the research process. We acknowledge supports from village and sub-village leaders, farmers, Makanya, Chome and Mwembe ward extension workers and the SWMRG - Makanya Field office. Support from the Sokoine University of Agriculture (SUA) is also acknowledged.

References

