Introduction

Forest conversion to agriculture such as coffee garden and rice field rapidly occurred in the upper Way Besai watershed, Sumberjaya, Lampung, Indonesia which involved activities such as land clearing, soil tillage, planting, weeding and applying fertilizers and pesticides by farmers. Those activities affect the water quality along the stream and river through sedimentation and accumulation of nutrients and pesticide residues.

Method

In the upper Way Besai catchment 30 sample points were selected and sampled in August 2005. Three subcatchments (Way Ringkih, Way Petai and Air Hitam) representative of the land use types in the upper Way Besai were sampled in more detail.

Flow of activities:
1. Rapid test of physical and chemical characteristics
2. Kick-sampling to collect macro-invertebrates
3. Picking out of macro-invertebrates
4. Identification of macro-invertebrates up to family level
5. Calculate FBI (Hilsenhoff, 1988)

Results

Biological water quality in the upper Way Besai catchment (43,000 ha upstream of the Hydro-Powerhouse) is in range from excellent to very poor. Water quality behind the dam is poor: a lot of water hyacinth. Near the powerhouse the Way Besai water quality improves dramatically, due to fast flowing conditions, a stony riverbed, that provide a good habitat for macro-invertebrates.

Conclusions

- Overall water quality reduces towards the downstream part. At some points however this trend is not confirmed.
- There seems to be a correlation with high FBI and areas with paddy field where pesticides and fertilizers are extensively used.

Acknowledgment

The Flemish Interuniversity Council (VLIR), ICRAF and RUPES kindly provided financial support to carry out this study.

FBI = \sum n_f t_f / N

where:
- \(n_f \) = the individuals of a family in the sample
- \(t_f \) = the tolerance value of organic pollution of a family
- \(N \) = the total number of individuals in the sample

<table>
<thead>
<tr>
<th>Family Biotic Index</th>
<th>Water Quality</th>
<th>Degree of organic pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.75</td>
<td>Excellent</td>
</tr>
<tr>
<td>3.76 - 4.25</td>
<td>Good</td>
<td>Possible slight organic pollution</td>
</tr>
<tr>
<td>4.26 - 5.00</td>
<td>Fair</td>
<td>Some organic pollution likely</td>
</tr>
<tr>
<td>5.01 - 5.75</td>
<td>Fairly poor</td>
<td>Substantial pollution likely</td>
</tr>
<tr>
<td>5.76 - 6.50</td>
<td>Poor</td>
<td>Very substantial pollution likely</td>
</tr>
<tr>
<td>6.51 - 7.25</td>
<td>Very poor</td>
<td>Severe organic pollution likely</td>
</tr>
</tbody>
</table>

The Air Hitam watershed, with virtually no forest cover and characterized by a lot of (extensively managed) monoculture coffee gardens, has the excellent to good water quality. Intact riparian areas, a stony riverbed and relatively high flow velocity, support a diverse and abundant macro-invertebrate community.

The other sampling spot on the Way Besai has fairly poor to very poor water quality compared to the upstream with forest cover. Likely a large area of intensively managed paddy rice with pesticides and high fertilizer rates is responsible for this.