Overall SAFODS Hypothesis. “In tree-depleted tropical landscapes with poor soils farming systems purely based on annual food crops are not sustainable, but a transition into tree-based farming is feasible and offers better prospects”

Hypothesis
- The transition into tree-based farming systems has to be gradual and based on farmers priorities. Interop system with local timber tree species will allow a transition and are compatible with farmers livelihood strategies.
- A quantitative system for tree-by-site matching can be developed to assist farmer specific choices from an array local trees options;
- A simple set of indicators of suitable site quality that will help to better recognize and utilize landscape niches for selected tree species;
- Estimation and validation of aboveground biomass and tree architecture of most preferred indigenous timber species will allow and improve model simulation;
- Development of array of management options for transitions years that matches biophysical options to household level labor and capital constraints and management goals.
- An approach to profitability and risk (economical) for realistic farm situations.

Objective
- Test a simple set of hypotheses and specific choices in agroforestry can be assisted by simplified representations of profitability and risk of a wide array of options;
- Develop an improved tree-soil simulation model to allow the generation of a large number of site-specific hypotheses and farmer management strategies that allow more rapid progress in on farm trials;
- Farmers management choices in agroforestry can be assisted by simplified representations of profitability and risk of a wide array of options;

Study Area Province of Leyte, Central Philippines

CONCLUSION OF THE THESIS
- If open-access forest still remains in the area, farmers don’t plant timber trees.
- Land tenure, the level of land fragmentation and the total area managed have strong effects on farmers’ attitude to plant timber trees. Cultural, demographic, labor availability and economic considerations didn’t show a significant effect in the model.
- The three indigenous tree species differ in their growth performance and respond to “site” properties. Four site descriptors (land position, soil type, soil texture and soil chemistry) could account for 14-74% of variation in tree performance depending on the tree species.
- Substantial variation in tree performance could not be explained by the biophysical indicators, implicating that farmers take considerable risk in planting trees on the basis of current “scientific” knowledge.
- The WanFBA model can be used as a non-destructive tool to predicting above-ground biomass and its components (Wood and Leaves). The “b” factor of the tree biomass allometric equation has a substantial variation among tree species around the claims of a universal value of 8/3.
- According to WanNuCLAS scenarios there is considerable scope for intercropping with “slow” growing timber trees, with systems that yield about half of the maximum tree biomass still allowing 70% of monoculture maize yield.
- Higher tree densities will lead to a loss of maize yield that is proportional to the gain in wood volume opportunities. Trees directly benefit in an intercrop system from the input (i.e. fertilizer) that are applied to the crops.
- Pterocarpus indicus and Vitex parviflora stood out as promising timber tree at intermediate densities. In a non-fertilization scenario intercropping or monocropping systems with Maize are not sustainable.
- Timber-based systems offer better returns to land and labor than monocropping activities, up to discount rates of at least 15%. Intercrop systems are well buffered from economic risk.
- Thus, a gradual transition from an annual food crop system to timber-based production systems adapted to the soil conditions can be attractive for farmers even at current prices.