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Light reflectance provides rapid assessment of

soil quality

Keith D. Shepherd and Markus G. Walsh••••

Abstract

The global threat of environmental problems cannot be reliably assessed without

methods for rapid measurement of soil quality. Here, we demonstrate rapid and

simultaneous prediction of a number of soil quality attributes for over 1000 African

soils from measurement of light reflectance spectra. User prediction accuracy was

70–88% for soil carbon, clay, and cation retention capacity, and user sensitivity was

>77% for several widely-used soil fertility capability tests. Site-level, management-

induced variation in soil properties and crop yields were also predicted. These

advances will greatly improve scientists’ ability to assess soil problems using

calibrations based on a small number of selected soils.

                                                
•  Correct citation:  Keith D. Shepherd and Markus G. Walsh, 2001.  “Light
reflectance provides rapid assessment of soil quality.”  Natural Resource Problems,
Priorities and Policies Programme Working Paper 2001-1.  International Centre for
Research in Agroforestry, Nairobi, Kenya.



2

1.  Introduction

Degradation of soil quality poses a serious threat to human welfare and the

environment (1–3). However, a lack of easily measurable attributes that reflect the

capacity of soil to perform specific production or environmental functions makes

broadscale quantitative assessment difficult (4, 5). Conventional assessments of soil

quality rely on local calibration of soil performance to soil laboratory tests, but these

analyses are expensive and large numbers of samples are required to adequately

characterize spatial variability (4). Advances in infrared spectroscopy and

chemometrics have created new possibilities for rapid non-destructive assessment of

soil constituents (6–12), but their routine application is limited (13–15). We

investigated whether measurement of diffuse reflectance spectra can be used for the

direct assessment of soil quality. As a basis for these investigations, we established a

spectral library of a diverse range of archived African topsoils (16) for which

standard soil analyses were available (17). The soils were derived from various

studies conducted in Malawi, Kenya, Rwanda, Tanzania, Uganda, Zambia, and

Zimbabwe. Spectral readings were taken on air-dried soil fines using a portable

spectrometer and an artificial light source (18).

2.  Prediction of soil properties

Basic soil physical and chemical properties showed high correlation with the

derivative reflectance values located around the principal absorption features in the

visible (0.4 – 0.6 µm) and short wave infrared (1.4, 1.9, 2.2, 2.3, 2.4 µm)

wavelength regions (Fig. 1).
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Fig. 1. Diffuse reflectance spectra from the Africa soils library. (A) Samples with smallest Euclidean

distance to central composite design points (Design) for the first three principal components of the

entire soils library (n=1170) and the spectra with highest (High) and lowest (Low) average albedo.

(B) The visible wavelength part of the spectra shown continuum removed to emphasize the

absorption features. (C) Correlation of soil carbon and clay concentrations and effective cation

exchange capacity (CEC) with the first derivatives of the relative reflectance at different wavelengths.
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Soil carbon, effective cation exchange capacity (CEC) and particle size distribution

could be predicted from the soil reflectance spectra with sufficient accuracy

(validation r2 0.70 – 0.88) for landscape studies and farm advisory work (Table 1).

Because these properties are often used in pedotransfer functions and models to

predict important soil functional attributes for agricultural, environmental and

engineering applications (4), such functional attributes should calibrate directly to

reflectance spectra. For example, using pedotransfer functions based on particle size

distribution to predict available water holding capacity (19) and soil erodibility (20),

predictions from spectra gave validation r2 values of 0.75 and 0.76, respectively.

3.  Prediction of soil tests

One of the most important functional attributes of soils is their capacity to support

plant growth. The African library was used to test how well soil reflectance spectra

could classify soils with respect to critical values for widely-used tests (21, 22) for

soil fertility capability (Table 1). The reflectance spectra correctly classified 77 –

96% of positive test samples and 69 – 83% of negative test samples in the validation

data sets. These results demonstrate the feasibility of using reflectance spectrometry

for broad diagnosis of soil fertility constraints and prediction of plant response to

specific soil ameliorants in tropical and sub-tropical African soils.
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Table 1. Prediction success for soil attributes in the A
frica soils library.

Prediction success using partial least squares regression (29)

Soil attribute
r 2cal *

r 2val *
SEP†

N
o. of soils

M
in

M
edian

M
ax

C
EC

‡ (cm
olc  kg

-1 soil)
0.91

0.88
3.6

1109
0.4

8.0
55

Soil carbon (g kg
-1 soil)

0.80
0.70

4.0
1011

2
12

56

C
lay (g kg

-1 soil)
0.90

0.77
72

682
50

400
790

Sand (g kg
-1 soil)

0.88
0.70

117
682

80
370

900

C
EC

clay  (cm
olc  kg

-1 clay)
0.89

0.88
7.4

666
3.1

37
95

Prediction success for soil tests using classification trees (30)

Soil test
Sensitivity§

Specificity║
n

pos ¶
n

neg #
N

o. of soils
M

in
M

edian
M

ax

pH
(w

ater) <5.5
✩

85
79

69
295

1135
4.2

6.0
10.0

A
cidity saturation >30%

 of C
EC

††
96

79
24

333
1109

0
0

94

Extractable P <7 m
g kg

-1‡‡
82

69
244

127
1152

0.1
3.7

330

Extractable P >15 m
g kg

-1§§
82

83
77

294
1152

0.1
3.7

330

Exchangeable K
 <0.2 cm

olc  kg
-1║

║
83

72
109

262
1152

0.03
0.3

6.2

Exchangeable K
 >0.4 cm

olc  kg
-1¶¶

78
83

161
210

1152
0.03

0.3
6.2

M
ineralizable N

 >4.1 m
g kg

-1 d
-1##

77
70

106
188

920
-2.8

2.8
45

*C
oefficients of determ

ination for observed versus fitted values for calibration and validation sam
ple sets. A

 sam
ple of one-third of the total soils library w

as
w

ithheld for validation. †Standard error of prediction. ‡U
nbuffered cation exchange capacity calculated as sum

 of cations and exchangeable acidity. §Percentage
of positive test values correctly classified in validation sam

ple. A
 random

 sam
ple of one-third of the total soils library w

as w
ithheld for validation.║

Percentage of
negative test values correctly classified in validation sam

ple. ¶N
um

ber of soils in validation sam
ple w

ith positive test value. #N
um

ber of soils in validation sam
ple

w
ith negative test value. ✩Strong soil acidity. ††M

oderate to high levels of A
l toxicity. ‡‡Food grain crops typically respond to P additions. §§Few

 crops respond
to P additions. ║

║
C

rop response to K
 additions expected. ¶¶ C

rop response to K
 additions unlikely. ## The one-third of our sam

ples w
ith the highest potentially

m
ineralizable N

 (>4.1 m
g N

 kg
-1 d

-1) w
ere assum

ed to be less likely to respond to N
 fertilization than sam

ples w
ith low

er test values.
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4.  Prediction of crop productivity

Data from a soil management experiment conducted at 29 sites in southern African

(23) were used to test whether crop productivity across sites within specific

agroecological zones could be calibrated to soil spectra. When agroecological zone

(n=3) and soil management treatment (n=4) were controlled using graphical

modeling (24), maize (Zea mays L.) grain yields (range 0.003 –  9.2 Mg ha-1) were

related to soil carbon (r2=0.67) and exchangeable bases (r2=0.61). Calibrations with

soil reflectance spectra produced cross-validated r2 values of 0.94 for exchangeable

bases (range 0.4 – 35.4 cmolc kg-1) and 0.87 for soil carbon (range 4 – 22 g kg-1).

Accordingly, yields were strongly related to the first three principal components of

the soil reflectance spectra (r2=0.70). These results provide good prospects for the

calibration of inherent soil fertility capability to soil reflectance spectra within

specific agroecological zones.

5.  Prediction of management-induced changes in soil quality

Archived soils from long-term field experiments were used to further test whether

variation in soil fertility within sites induced by soil management could be related to

soil spectra. In an 18-year field experiment in Kenya testing different levels of

fertilizer, manure and crop residue management (25), high cross-validated r2 values

(0.77 – 0.82) were obtained for prediction of soil fertility attributes and crop yields

from spectra (Table 2). In a further test at two sites in Kenya (26) the effects of only

18 months of contrasting land uses on the light fraction (>150 µm and <1.13 Mg m–

3) of soil organic matter (range 0.1 – 2.7 g kg-1 soil; n=32) were strongly related to

the reflectance spectra (cross-validated r2=0.81). These results demonstrate that it is
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feasible to develop site-specific calibrations between management-sensitive

attributes of soil quality for crop production and soil reflectance spectra.

Table 2. Prediction success in an 18-year soil management experiment.

Soil attribute r2
cal* r2

val* SEP† Min Max

Exchangeable bases (cmolc kg-1 soil) 0.90 0.81 0.796 6.3 12.8

Light fraction OM‡ (g kg-1 soil) 0.89 0.78 0.288 0.8 8.2

Microbial biomass C (mg kg-1 soil) 0.90 0.80 11.8 40 133

Bean yield§ (Mg grain ha-1) 0.91 0.82 0.092 0.22 1.01

Maize yield§ (Mg grain ha-1) 0.88 0.77 0.535 1.65 5.39

*Coefficients of determination for observed versus fitted values for calibration (n=31) and full cross-

validation sample sets. †Standard error of prediction. SEP for light fraction soil organic matter

(SOM) is presented for loge transformed data. ‡Light plus medium Ludox fraction of organic matter

>250 µm size and <1.37 Mg m-3 density. §Long-term average grain yields. Maize (Zea Mays L.) and

beans (Phaseolus vulgaris L.) were grown once each year in rotation.

6.  A new approach to soil evaluation

The results amplify previous findings showing the promise of reflectance

spectrometry in soil studies (6–15) and point to a new approach to soil evaluation,

based on direct calibration of soil performance to spectral libraries. Because the

spectral technique allows large numbers of samples to be rapidly analyzed, resources

can be directed towards thorough characterization of the soil spatial variability

within a target region. Experiments to develop direct calibrations for various soil
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functions can then be conducted on a small number of benchmark soils or sites,

selected to represent the variation in the spectral library (e.g. Fig. 1). For example, a

calibration set of only 80 soils, selected on the basis of their spectral properties, was

adequate to predict CEC for the entire Africa soils library (validation r2 = 0.80 for

the remaining 1017 library samples). Similarly, a classification tree with a single

splitting node developed from only 30 selected spectra (twice replicated composite

design) gave good success (sensitivity of 80% and specificity of 81%) in predicting

low CEC values (<4 cmolc kg-1) for the library.

7.  Conclusion

The spectral library approach makes it possible to generalize the results from soil

assessments that are conducted at a limited number of sites, and expands

opportunities for using multi- and hyperspectral remote-sensing (6, 27, 28).

Functional attributes that are expected to calibrate well to soil reflectance spectra

include: inherent plant productivity, soil toxicity and nutrient limitations to plant

growth, soil erodibility, soil compressibility and shrinkage, water retention and

conductivity, and capacity to adsorb wastes and pollutants. These advances will

greatly improve scientists’ ability to address global environmental issues such as

land degradation and carbon sequestration.
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