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Abstract

The potential of diffuse reflectance spectrometry (DRS) as a rapid integrated measure of soil

quality for plant production was demonstrated using a comprehensive spectral library (0.35-

2.5 µm) of African soils. In controlled soil management experiments, soil reflectance

convolved to Landsat 5 wavelength band-passes correlated with various soil quality attributes

(r2 range, 0.26-0.82) and crop yields (r2 range, 0.30-0.80). Using 10 nm wavelength bands,

soil reflectance correlated well with basic properties (r2 range, 0.66-0.90) of a wide diversity

of soils. We show how DRS can be used with ground observations and Landsat 5 imagery to

determine the spatial variation in soil properties.  DRS could help with prediction of various

soil functions, such as carbon sequestration potential.
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1.  Soil Quality Assessment

Degradation of soil quality has negative impacts on agricultural productivity, ecosystem and

atmospheric change, and water and habitat quality (1,2). The major soil degradation

processes are accelerated soil erosion, depletion of soil organic matter, soil nutrients, and the

deterioration of soil structure. It has been estimated that the degraded area of the world’s

arable land increased from 10% in the early 1970s to about 40% in the early 1990s (1). The

greatest need for remediation is in developing regions of the world, where the rate of loss of

agriculturally usable land has been estimated at 0.3% per year (2). In order to effectively

manage the soil resource base, land managers require more reliable and cost-effective

assessments of soil quality over time and space.

In general, quantitative assessments of soil quality and degradation are hampered by a

lack of easily measurable attributes that reflect the capacity of soil to perform specific

production, environmental or ecological functions (3). Soil quality is most commonly

assessed in the laboratory using soil physical, chemical and biological properties as proxies

for soil functional attributes. Generally, several soil properties are required to characterize a

particular soil function. This is time-consuming, expensive and large numbers of samples are

required to quantify the spatial and temporal variability of an area (4). In developing

countries resources to support such assessments are limited. Most importantly, sets of soil

quality indicators developed for a specific purpose generally do not provide inference about

the capacity of soils to perform other functions (3).

Thus we urgently require methods for assessing soil function that can be cheaply,

rapidly and repetitively applied. Ideally, the measurements should be (1) highly sensitive to a

broad range of physical, chemical and biological properties of soils and (2) diagnostic of

management-induced changes in soil functional attributes at field to landscape levels of

observation. We provide evidence here that strongly supports the use of diffuse reflectance

spectrometry in this context.

2.  Diffuse Reflectance Spectrometry (DRS)

Many components of complex material mixtures (such as those contained in a soil sample)

can be distinguished on the basis of their spectral signatures in the solar reflective region.

Spectral signatures of materials are defined by their reflectance, or absorbance, as a function
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of wavelength. Under controlled conditions, the signatures are due to electronic transitions of

atoms and vibrational stretching and bending of groups of atoms that form molecules and

crystals.

Fundamental features (or modes) in reflectance spectra occur at energy levels that

allow molecules to rise to higher vibrational states. The fundamental features related to

various components of soil organic matter, for example, generally occur in the mid- to

thermal-infrared range (MIR, 2,500-25,000 nm), but their overtones (at one half, one third,

one fourth etc. of the wavelength of the fundamental feature) occur in the near- (NIR, 700-

1,000 nm) and short wave infrared (SWIR, 1,000-2,500 nm) regions. Soil minerals such as

different clay types have very distinct spectral signatures in the SWIR because of strong

absorption of the overtones of SO4
2–, CO3

2– and OH– radicals and combinations of

fundamental features of, for example, H2O and CO2 (5). The visible (VIS, 400-700 nm)

region has been widely used for color determinations in soil and geological applications as

well as in the identification of iron oxides and hydroxides (6).

Recent research has demonstrated the ability of DRS to provide non-destructive rapid

prediction of soil physical, chemical and biological properties in the laboratory (7, 8). DRS

has also been used in the field, for instance to determine soil organic matter content (9).

Beyond the discrimination of major soil types, there has been limited success in sensing soil

properties directly from satellite multi-spectral and aircraft hyperspectral data however (7,

10). The main inherent problems with imaging spectrometry are sensor spectral resolution,

shade and shadow effects, atmospheric interference, and mixtures of materials within pixels

(11). Thus while there is a growing body of literature related to the application of DRS to soil

science there has been little focus on examining the potential of soil reflectance as an

integrated indicator of specific soil functions, such as those related to plant productivity. In

this study, we investigated the ability of DRS to: (1) determine various soil quality attributes

as affected by management and site factors, and (2) provide an integrated measure of soil

quality for assessing plant productivity. We also show how DRS measurements can be

integrated with ground observations and satellite data to assist spatial prediction of soil

erosion risk.
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3.  Methods

We measured diffuse soil reflectance on archived soil samples from three soil quality

management experiments and two on-going ecological studies in eastern and southern Africa:

1. A long-term (18 yr-old) soil management experiment (LTSM) in Kenya in which soil

fertility management practices were tested under a rotation of maize (Zea mays L.) and

beans (Phaseolus vulgaris L.). The treatments were examined for their effects on crop

yield, soil organic matter fractions and soil chemical properties (12).

2. A short-term (2 yr-old) agroforestry experiment (STAF) conducted on two soils in Kenya

(Oxisol and Alfisol) to determine the effect of unfertilized, organic-based land-use

systems on fractions of soil inorganic and organic P and maize productivity (13).

3. A multilocation agroforestry trial (MLAF) conducted during 1993-1994 at 29 sites in

Southern Africa (Malawi, Zambia and Zimbabwe) to determine the effect of unfertilized,

organic-based land-use systems on soil quality and maize productivity (14).

4. A survey of archived agricultural soils (LIB) sampled in on-farm trials and soil surveys

from 993 locations in eastern and southern Africa (Kenya, Tanzania, Rwanda, Malawi,

Zambia, Zimbabwe). The collection includes up to 993 topsoil (0-15 or 0-20 cm depth)

and 410 subsoil samples (up to 1.5 m depth).

5. A study to identify the source area of non-point source pollution in the upland drainage

basin of the Kenyan portion of the Victoria Lake Basin in Eastern Africa (LVB). The

study is designed to quantify variation in soil degradation due to effects of land use and

physiography (15).

Soil reflectance and chemical analyses were conducted on air-dried soil samples gently

crushed to pass a 2-mm sieve. Soil reflectance was measured using a FieldSpecTM FR

spectroradiometer (16) at wavelengths from 0.35 to 2.5 µm using a 1 nm spectral sampling

interval (17). The relative reflectance spectra were resampled to 10 nm bands that are similar

to the spectral resolution of currently available airborne imaging spectrometers. We also

convolved soil reflectance spectra to correspond to Landsat 5 Thematic Mapper band-passes

using ENVI® (18) as we are currently using multispectral imagery for characterizing soils in
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Africa. All soil analyses were conducted by the ICRAF soil laboratory using standard

methods (12, 13).

4.  Soil Chemometrics

In the controlled experiments, in which soil quality indicators were known to be affected by

soil management, we found good relationships (r2 > 0.5) between a number of soil attributes

and soil reflectance convolved to Landsat 5 band-passes (Table 1). For instance, in the STAF

experiment, despite the short duration of the fallow treatments (17 months), soil relative

reflectance explained 26 to 77% of the variation in the soil phosphorus attributes within

individual sites (Table 1) and 30 to 98% among the two sites (20). In the LTSM experiment,

there were strong relationships between simulated Landsat 5 spectra and soil attributes that

comprise a small fraction (< 5%) of total soil mass (e.g. light fraction N, r2 = 0.78) and with

soil biological properties that normally display high temporal variability (e.g. microbial N, r2

= 0.74). Presumably, soil reflectance is related to differences in the large constituents of

organic matter that are in turn strongly related to smaller organic fractions and biological

activity. This confers added advantage to soil reflectance measures because small organic soil

fractions are frequently difficult to determine analytically and may not be reliable indicators

of nutrient availability (13).

For some poorly predicted soil attributes, goodness of fit improved dramatically when

we used breakpoint (or piece-wise) regression analyses (21). For example, the r2 values for

soil nitrate (Table 1) increased from 0.13 to 0.63 (breakpoint 3.5 mg N kg-1) and for

extractable P from 0.40 to 0.82 (breakpoint 15.0 mg P kg-1). The use of break-point

regression may be justified as the repeatability of certain soil extractions decreases at

threshold values that may be inherent in the laboratory technique rather than a function of a

lack of explanatory power of the soil reflectance measurements.

Ideal soil quality indicators would not only allow monitoring of the effects of

management at a site but also provide basic measurements of soil quality over a wide range

of soil conditions (3). Using our Africa soils library (Table 2), Landsat 5 simulated

reflectance spectra provided significant (p < 0.001) relationships, albeit with generally poor

fits (r2 < 0.5). Even so, we found a moderately good fit (r2 = 0.6) for effective cation

exchange capacity of the clay fraction, which is a good indicator of clay mineralogy, and

hence useful for inferring many associated soil properties. However, using 10 nm resolution
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bandpasses, we obtained good fits for all the soil variables tested (Table 2). The results

demonstrate the potential of DRS for detection of both subtle management-induced effects on

soil quality within sites and broad differences across sites, and the possibility of using even

Landsat 5 simulated spectra with local calibration.

Table 1. Relationships between soil attributes and soil reflectance in soil management experiments.
Coefficients of determination (r2) are for observed versus expected values of soil attributes (0–15 cm
depth) predicted from soil reflectance spectra convolved to Landsat 5 band-passes.

Soil Attribute Study Method n r2 Min Max

Total soil N (g kg-1) LTSM GM† 31 0.66 1.4 2.2

Macroorganic matter (g kg-1) LTSM GM 31 0.70 21 37

Light fraction N (mg kg-1) LTSM GM 31 0.78 23 126

Medium fraction N (mg kg-1) LTSM GM 31 0.71 4 75

Heavy fraction N (mg kg-1) LTSM GM 31 0.71 9 31

Microbial C (mg kg-1) LTSM GM 31 0.70 40 133

Microbial N (mg kg-1) LTSM GM 31 0.74 8 24

NaOH organic P (mg kg-1) STAF-1* GM 16 0.68 155 199

NaOH organic P (mg kg-1) STAF-2 GM 16 0.62 62 113

Resin inorganic P (mg kg-1) STAF-1 GM 16 0.34 2.3 4.4

Resin inorganic P (mg kg-1) STAF-2 GM 16 0.77 5.7 18.7

Light fraction P (mg kg-1) STAF-1 GM 16 0.33 0.1 2.2

Light fraction P (mg kg-1) STAF-2 GM 16 0.39 0.1 1.6

Macroorganic matter P (mg kg-1) STAF-1 GM 16 0.26 0.7 4.4

Macroorganic matter P (mg kg-1) STAF-2 GM 16 0.52 0.5 4.4

Soil C (g kg-1) MLAF CC‡ 114 0.76 6 32

Soil nitrate (mg kg-1) MLAF BR§ 114 0.63 0.01 16.5

Exchangeable K (cmolc kg-1) MLAF CC 116 0.65 0.04 0.94

Extractable P (mg kg-1) MLAF BR 116 0.82 1.3 72.5
*STAF-1 is Oxisol and STAF-2 is Alfisol
†Graphical model (17)
‡Canonical correlation analysis
§Breakpoint regression analysis
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Table 2.  Relationship between soil atrributes and soil reflectance for the Africa soils library. Coefficients of
determination (r2) for observed versus expected values of soil attributes (0–15 cm depth) predicted from soil
reflectance spectra using two spectral sampling methods: Landsat 5 and 10 nm bands. The data set includes
topsoils and subsoils from Kenya, Tanzania, Rwanda, Malawi, Zambia, and Zimbabwe.

r2

Soil Attribute Study Method n
TM 10 nm

Min Max

Soil C (g kg-1) LIB CC 982 0.43 0.83 1.6 50.1
pH (water) LIB CC* 982 0.33 0.82 4.2 10

Exchangeable Ca (cmolc kg-1) LIB CC 982 0.48 0.90 0.1 35.1

Exchangeable Mg (cmolc kg-1) LIB CC 982 0.44 0.86 0.02 12.4

Exchangeable K (cmolc kg-1) LIB CC 982 0.33 0.74 0.02 6.2

Extractable P (mg kg-1) LIB CC 982 0.23 0.64 0.3 328

Mineralizable N (mg kg-1 d-1) LIB PLS† 814 0.12 0.66 -0.5 30.1

Clay (%) LIB CC 652 0.42 0.92 5 80
Silt (%) LIB CC 652 0.24 0.78 1 40

Sand (%) LIB CC 652 0.30 0.90 7 90
CEC per unit clay (cmolc kg-1) LIB CC 982 0.60 0.82 1.4 171
*Canonical correlation analysis
†Partial least squares regression

5.  Integrated Measurement of Soil Quality for Plant Production

Because many of the soil properties taken to represent soil quality are inter-correlated, we

investigated whether DRS could provide an integrated measure of soil quality that relates

directly to specific soil functions, here plant production. In the long-term experiment

(LTSM), we found significant relationships between treatment factors, maize and bean grain

yield and soil reflectance. Soil reflectance (Landsat 5 band-passes) alone explained 72% of

the variance (p < 0.0001) in long-term maize grain yield (range of 1.6 to 5.4 t ha-1) and 80%

of the variation (p < 0.0001) in long-term bean yield (range of 0.2 to 1.0 t ha-1). Lower yields

were associated with higher reflectance in the near-infrared portion of the spectrum and lower

reflectance in the visible range (Fig. 1). Soil relative reflectance in the SWIR range increased

by about 0.005 units for each one t ha-1 decrease in maize yield.
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Fig. 1. Soil reflectance responses to variations in long-term average maize yield in a soil management

experiment (LTSM). Reflectance spectra are convolved to Landsat 5 band-passes and were predicted from a

graphical model. Shown are departures from average reflectance values in units of standard deviations (Z-

scores).

In the STAF experiment, yield for the cropping season immediately after treatment

was dependent (p < 0.001) on total P in macroorganic matter and resin inorganic P, but was

conditionally independent of the other measured soil P attributes that were affected by

treatment (13). Soil relative reflectance alone explained 39 to 67% of the variation in grain

yield and increased the explained variance by 9 to 25% when included in the yield model

together with the soil P attributes (Table 3). Soil relative reflectance in the SWIR range

increased by about 0.005 units for each one t ha-1 decrease in maize yield at both sites.

Table 3.  Relationships between maize grain yield, soil attributes and soil reflectance in a short-term
agroforestry experiment at two locations (STAF). Coefficients of determination (r2) for observed
versus expected values of maize yield predicted from soil attributes (0–15 cm depth) and soil
reflectance spectra convolved to Landsat 5 band-passes. Yield ranged from 0.32 to 5.39 t ha-1 on the
Oxisol and from 0.04 to 2.30 t ha-1 on the Alfisol.

r2
Model Dependent variables included in the models Method n Oxisol Alfisol

1 Total P in macroorganic matter (mg kg-1 soil)
Resin inorganic P (mg kg-1) GM* 32† 0.77 0.57

2 Soil relative reflectance GM 32 0.39 0.67

3
Total P in macroorganic matter (mg kg-1 soil)
Resin inorganic P (mg kg-1)
Soil relative reflectance

GM 32 0.86 0.82

* Graphical model †16 observations at each site
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In the MLAF trial, we detected significant interactions between soil attributes, fallow

treatment, agroecological zone and maize grain yield for the cropping season immediately

after treatment (Fig. 2). The four treatments directly influenced soil nitrate levels as well as

maize yields. Nitrate, soil carbon and maize yield levels were also strongly influenced by

agroecological zone (p < 0.01). The overall model explained 69% of the variation in maize

yield (p < 0.0001). A similar model based on simulated Landsat 5 soil reflectance spectra,

treatment and agroecological zone explained 62% of the variation in post-treatment maize

yield (p < 0.0001). Again, we observed that soil reflectance as might be seen by Landsat 5

increased as crop yields decreased (Fig 3).  In this case, the response in reflectance per unit

yield is large because both site as well and soil management factors are involved. When 10

nm bandpasses were screened relative to their explanatory power of post-treatment maize

yield, a model based on agroecological zone, treatment and three spectral bands centered on

0.7, 1.0 and 1.9 µm explained 75% of the variation in maize yield.

In summary, each experiment required different soil chemical extractions to describe

the major sources of variation in soil quality as indexed by crop performance. In each case it

was unknown, a priori, which specific attributes were going to be most influential in

describing soil quality. Conversely, models based on soil reflectance provided substantial

variance reductions in assessments of crop performance in all three experiments and either

outperformed or strongly complemented soil quality assessments based on physical and

chemical analyses. We also observed soil reflectance responses that consistently shifted

toward lower reflectance in the NIR and SWIR regions with increasing crop yield levels.
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Fig. 2. Graphical model showing conditional dependencies between maize yield and other variables in a

multilocation agroforestry experiment (MLAF, 14). The variables are: maize grain yield during the first season

after treatment (Ym, range 0.003 to 9.2 t ha-1), agro-ecological (AEZ, 3 zones), agroforestry treatment (TRT),

exchangeable K (EXK), extractable P (EXP), soil organic carbon (SOC) and soil nitrate (NIT). All depicted

conditional dependencies are significant at the p < 0.01 level.
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Fig. 3. Modeled response of soil reflectance spectra to variations in maize yield in a multilocation agroforestry

experiment (MLAF). The reflectance spectra are convolved to Landsat 5 band-passes.
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6.  Landscape Level Erosion Risk Assessment

In the Victoria Lake Basin study we used DRS coupled with ground survey and satellite

information to prioritize watersheds on the basis of their non-point source pollution potential

(22). Field-measured soil reflectance spectra were used with Landsat 5 images to identify a

large sediment plume in Lake Victoria (Fig. 4) originating from the Nyando River (23). A

systematic ground survey was initiated in the catchment area of approximately 3,600 km2 to

identify areas where accelerated soil erosion, sediment loading and nutrient leakage were

occurring (24).

Results for 449 soil surface samples collected indicate that erosion-prone surfaces in

the watershed have geophysical characteristics that are highly distinct in terms of their

respective soil reflectance values (Fig. 5, Table 4). Graphical model analysis (19) revealed

that soil erosion surface type was highly dependent (p < 0.01) on soil reflectance even after

accounting for other principal factors that contribute to site erosion potential such as

vegetation cover, land use and slope factors (Fig. 6). Models based on ground reflectance

measurements and satellite images (26) are helping to target areas that are at high risk for

accelerated soil erosion (Fig. 7). This helps to focus both research and development

interventions and locate areas where more detailed erosion studies may be warranted.  We are

using the same method to predict the spatial variation in other soil properties, such as soil

carbon, pH and clay content.
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Fig. 4. Sediment plume originating from the outlet of the River Nyando in the Winam Gulf area of Lake

Victoria. Area of coverage is 12,480 km2.
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Fig. 5. Average reflectance spectra for six groups of alluvial soils from the Nyando River Basin in Western

Kenya. Soils were sorted into groups using CART© classification (25) on the basis of visible signs of

accelerated soil degradation observed during field survey and soil reflectance. The soil groups are non-eroded

(U1, U2, U3), capped (C1, C2), and gully-edge (G1).
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Table 4: Partial soil degradation risk profiles for six major groups of alluvial soils from Kenyan
portion of the Victoria Lake Basin. The soil groups are non-eroded (U1, U2, U3), capped (C1, C2),
and gully-edge (G1). The risk profile variables are: prob (C) = posterior probability of being sampled
from capped site; prob (G) = posterior probability of being sampled from gully-edge sites.

Soil Group n prob (C) prob (G)

U1 85 0.06 0.02

U2 66 0.18 0.02

U3 52 0.04 0.06

C1 46 0.57 0.24

C2 32 0.41 0.22

G1 43 0.26 0.63

SASE

SRF1

LUT

GCSRF2

WCLS

Fig. 6. Graphical model showing modeled conditional dependencies between visible signs of accelerated soil

erosion, ground observations and soil reflectance. Signs of accelerated soil erosion (SASE is a categorical

variable in 2 classes 1 = no visible signs of accelerated soil erosion, 2 = sites w. rills, gullies or capped soils);

land use type (LUT is a categorical variable in 3 classes, 1 = smallholder agriculture, 2 = commercial

agriculture, 3 = other land uses incl. forest, rangeland & wetland categories); ground vegetation cover (GC in %

cover to 1 m height), woody vegetation cover (WC in % basal cover) slope LS-factor (24) and soil reflectance

(SRF1 & SRF2 = 1rst two principle components of soil reflectance, SRF1 accounts for 94% and SRF2 for 5% of

the variation in soil reflectance across all sampled 30×30 meter plots (n = 150)). All depicted conditional

dependencies are significant at the p < 0.01 level.
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Fig. 7. Targeting potential soil erosion hotspots in landscapes. (a.) Near true color Landsat 5 composite of an

area covering the outlet of the River Nyando in Western Kenya. Area of coverage is 729 km2 (b.) Conditional

probability matching of areas corresponding to sites with rills, gullies or capped soils.



15

7.  Implications for Remote Sensing of Soil Quality

We have demonstrated the operational feasibility of using DRS as an integrated indicator of

both long- as well as short-term variations in soil quality for plant production. We have also

demonstrated how DRS can be used for calibration of landscape models relating soil

properties, such as proneness to soil erosion, to Landsat 5 imagery. Because it was possible to

distinguish different erosion surface types in this study, we believe that it may be possible to

directly calibrate DRS measurements to dynamic tests of soil erodibility such as those using

run-off plots (27) and rainfall simulators (28) that are typically very expensive and time

consuming to implement under field conditions.  We are further testing the use of DRS to

help locate sources of suspended or deposited sediments in rivers, lakes and wetlands by

matching spectral signatures of the sediments with those from spectral libraries of soils

within a catchment.

In the laboratory, DRS requires only minimally processed soils and a single operator

can run several hundred samples a day. If required, the process could easily be fully

automated for continuous or batch processing. There are also good prospects for rapid

characterization of soil quality in the field using currently available portable spectrometers,

with or without artificial light sources. The current cost of portable instruments is about

$60,000, but limited wavelength range instruments are available for around $10,000, and

costs are expected to decrease as technology advances. Standard soil tests costs are in the

range US$10–100 per sample and analysis. We have shown that even Landsat 5 simulated

spectra are useful for soil quality characterization under conditions of local calibration, which

will facilitate the use of cheaper field instrumentation, natural light sources and aircraft and

space applications. Until further advances are made in methods for unmixing soil background

signal from vegetation and other materials, we suggest that laboratory and field-based DRS,

used in conjunction with field observations and satellite imagery as shown here, may provide

a promising technique for assessing spatial distribution in soil properties, such as soil carbon

stocks, over large extents.

These advances have major implications for how we conduct experiments, and

surveys of the impacts of interventions on soil quality and productivity. For example, through

rapid characterization of spatial variation in soil quality, DRS could help to improve

experimental and survey design and analysis, and provide cheaper and more rapid farm

advisory services. The ability to collect real-time data on soil quality and its response to
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management at high levels of spatial resolution should greatly enhance adaptive management

of natural resources, including precision agriculture and watershed management. An

integrated soil quality index can also be an important tool in economic analysis of agricultural

systems (29).

Because DRS correlated well with a range of basic soil properties, there is good

reason to expect that it will also predict a number of related soil ecological and engineering

functions, such as anion and cation retention, and site stability. Furthermore, it may be

possible to use DRS to assess traditionally ‘difficult’ soil functions, such as soil carbon

sequestration potential, buffering effects of soil microbial processes on pollution (30) and soil

factors related to plant community succession-retrogression. We envisage that the direct

calibration of different soil functions to soil reflectance at multiple levels of observation will

replace much current soil management research that is site specific. Countries in tropical

regions where resources for land resource surveys, soils research and soil analyses are most

severely limited may benefit most from these advances.
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